WHAT CAN CLAY MINERALOGY TELL US ABOUT ALTERATION ENVIRONMENTS ON MARS?

David Bish and David Vaniman

Products of Mineralogical Studies

- Mars' surface mineralogy can provide:
 - clues to its hydrologic, atmospheric, and geochemical histories
 - constraints on past alteration processes, both surface and subsurface
- Distribution of clay minerals over time and with depth \Rightarrow time-resolved information on alteration
- *Presumably*, organics/biology did not participate in the low-T formation of clay minerals.

What can clay minerals tell us?

- That liquid water was present!
- That alteration took place at (relatively) low temperatures (e.g., weathering)
- Water compositions
 - open vs. closed hydrologic systems
- Whether any post-formation alteration took place
 - diagenesis, metamorphism

Cheto bentonite, Arizona

Mineralogy vs. intensity of weathering (modified from Velde, 1985).

Importance of Silica Activity

- Silica activity often controls the formation of both clay minerals and zeolites
 - zeolites and smectites are stable at elevated silica activities
 - depend on open- vs. closed-system hydrology
- Numerous recent suggestions of amorphoussilica deposits on Mars
 - hydrothermal alteration or from acidic vapors with small amounts of liquid water.
- Stability diagrams can shed light on alteration conditions.

Stability diagram for minerals in the AI_2O_3 -SiO₂-H₂O system. "p" in axis labels refers to -log[] (Kittrick, 1969).

Alteration of Volcanic Glass to Clinoptilolite

St. Cloud Mining, Buckhorn, NM

Smectites vs. Zeolites

- Smectites or zeolites can form from volcanic ash, depending on conditions
 - basaltic ash does not *always* alter to phyllosilicates
 - smectite—near- or below-neutral pH conditions
 - zeolites—alkaline conditions
 - smectites and zeolites *together* would indicate a more persistent and evolved hydrogeologic system

- Kaolinite stable at low pH, low Na, and high silica
- Smectite stable at high silica, medium pH, and medium to high Na
- Note the analcime stability field at high pH's and high Na

Stability relations of phases in the Na₂O-Al₂O₃-SiO₂-H₂O system at 25° C and 1 atm.

From Garrels and Christ (1965)

Smectites vs. Kaolin Minerals

 Kaolin minerals form on Earth most commonly in tropical climates, usually under more-acidic conditions and with high water:rock ratios (i.e., well drained).

- But, they can form hydrothermally, accompanied by amorphous silica and TiO_2 minerals such as anatase.
- On Mars, a Ti-Si association has been considered to support acid-vapor alteration (Yen et al., 2007)—not a unique solution.

 Kaolinite stable at low pH, low K, and a(SiO₂) > qtz

 Mica stable at low a(SiO₂), med pH, and med-high K

Stability phases in the K₂O-Al₂O₃-SiO₂-H₂O system at 25°C/1 atm. Solid circles represent of waters from arkosic sediments. From Garrels and Christ (1965)

Halloysite vs. Kaolinite

Detection of 10Å hydrated halloysite, a more hydrated kaolin mineral, on Mars would imply that the mineral had never experienced dehydration after formation.

Halloysite implies very different formation processes than kaolinite.

Nontronite on Mars

 Nontronite has long been speculated to occur on Mars and has been identified spectrally.

 Generally considered that nontronite forms at *low temperatures* under *reducing* conditions (where Fe is soluble).

+ : nontronite formation; --- : no formation Stability fields from Garrels & Christ (1965) (Harder, 1976).

Correlation of T-dependent mineral assemblages in shales and volcanic rocks (Hoffman and Hower, 1979)

The occurrence of "higher-grade" clay minerals such as illite and illite/smectite would suggest the occurrence of diagenetic and low-grade metamorphic reactions.

Relationship between T and extent of smectite-to-illite reaction

Time-temperature limits on clay minerals (modified from Velde, 1992).

This figure implies that mixed-layer illite/smectites are not stable over long times even at low temperatures.

Long-Term Clay Mineral Stability on Mars

- Poorly ordered clay minerals (e.g., smectites and illite/smectites) do not occur in old rocks on Earth
 - often assumed that they gradually transform to more stable phases such as illite, micas, and chlorites.
- Discovery of smectites in Noachian terrains has important implications for the long-term stability of clay minerals and suggests an alternative hypothesis
 - tectonic activity on Earth eventually results in the progressive alteration of low-temperature minerals to higher-temperature assemblages.
- Smectites on Mars in rocks >3 Gya would rewrite our understanding of clay mineral stability
 - in the absence of (plate) tectonic activity, "metastable" clay minerals may be "stable" for times on the order of the age of the planet.

Summary

The occurrence of clay minerals ⇒ aqueous alteration has occurred.

Specific clay minerals can put limits on the conditions of mineral formation, e.g.,

-kaolin \Rightarrow high water:rock, low pH

-zeolites ⇒ low water:rock, closed system, high pH

-smectites \Rightarrow open system, med pH, I/S \Rightarrow

 ID of "old" smectites on Mars can rewrite our understanding of clay stability.

 Clay mineralogy can clarify alteration mechanisms the entire mineral assemblage can greatly constrain processes responsible for today's martian mineralogy.

